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SumMARY. By focusing on a confidence interval for a nuisance parameter, Berger and Boos (1994, Journal

of the American Statistical Association 89, 1012-1016)
showed that, for a 2 x 2 table, this procedure general

proposed new unconditional tests. In particular, they
ly was more powerful than Fisher’s exact test. This

paper utilizes and extends their approach to obtain unconditional tests for combining several 2 x 2 tables
and testing for trend and homogeneity in a 2 x K table. The unconditional procedures are compared to the
conditional ones by reanalyzing some published biomedica] data.
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1. Introduction

In many situations where the comparison of the response rates
in several groups is of interest, the total number of responses
is not fixed. For instance, in a dose-response study using K
dose levels, the total number of responses is random. Standard
procedures for testing for a trend in the response rates, how-
ever, condition on this total, e.g., the implementation of the
Cochran-Armitage test in StatXact-3 (Cytel, 1995, p. 479).
‘These conditional procedures are appropriate, but they may
not be the most powerful due to the discreteness of the con-
ditional sample space.

For the analysis of 2 x 2 tables, a variety of unconditional
procedures have been developed (for reviews, see Martin and
Silva (1994) and Upton (1982)). Suppose the statistic T is
used to test the null hypothesis Hy that the response rates
in two groups are equal to an unknown common value .
For the observed value ¢ of T, Barnard (1947) and Suissa and
Shuster (1985) took p,, = supre(0,1)(Pr(T > t)) as the p-value
of the unconditional test, where 7 is a nuisance parameter.
Mehta and Hilton (1993) showed that using the supremum
over all 7 in [0,1] entails a conservative p-value. Berger and
Boos (1994) considered the supremum of P (T > t) over a
100(1 ~ )% confidence region Cy for 7 so that the p-value
of their unconditional test is given by py = suprec, (Pr(T 2>
t)) + . Berger (1996) showed that this confidence interval
method reduces the conservatism of the unconditional test.
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We extend the Berger and Boos (1994) approach to obtain
unconditional versions of the Cochran-Armitage trend test
as well as the test for homogeneity of the response rates in K
groups in Section 2. An unconditional combination procedure
for several 2 x 2 tables is given in Section 3.

2. Unconditional Tests for 2 x K Contingency Tables
Consider the response rates in K groups. Let n; be the sample
size of the ith group and X; the number of responses. Clearly,
each X; is distributed as a binomial random variable with
parameters m; and n;.

In dose-response or carcinogenicity studies, the alternative
of interest is a trend in the m;. A classic test for trend is the
Cochran-Armitage test (Cochran, 1954; Armitage, 1955),

K
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Originally, the asymptotic normality of T was used to analyze
large samples. Exact mferences are made using the conditional
distribution of T given ZZ 175 (cf., Agresti, 1990, p. 118;
Cytel, 1995, p. 479).
The unconditional sample space is ) = {x = (z1,29, ...,
k):0<x; <ny, i=1,...,K}. Under the null hypothesis
Ho: m1 = my = --- = mg = 7, the probability of each outcome
is

K .
Pr(x) = H (Z:) a1 — )T

i=1

Suppose outcome x was observed and T'(x) = t. To obtain an
unconditional test that extends the approach of Berger and
Boos (1994), one first finds a 100(1 — 4)% confidence region
Cy for of the form [m, my] from the binomial distribution
of Y = EZ 1 X; under Hgy, where

7 = sup ﬁ:Z(?j)nu(l—ﬂ-)N—u<% )

u2y
. . N u N-—u v
Tty = inf W.Z(u)ﬂ'(l—ﬂ') <2 ,
uly

y is the observed Y, and N = ZiKzl n;. The p-value of the
unconditional version of T is

py = sup (Pr(T > t)) +
neC ey
K .
= sup Z‘ H <nz> 7rui(1 _ ﬂ)ni—ui +,
meCy ~ o U
(u1,...,ur )ERT i=1
(2)
where Ry = {(u1,un,...,uk) € Q: T(ui,ug,...,ux) > t}.

Note that the outcomes where all z; are equal to zero or n;
are placed in the acceptance region, the complement of Ryp.

Examples 1 and 2

To illustrate the gain in sensitivity of the unconditional trend
procedure, we reanalyze the data from two studies reported
in Bickis and Krewski (1989) using equally spaced scores and
v = .001. In a study of follicular cell adenomas, the following
results were reported (number of animals with tumor/number
of animals): dose 0, 0/8; dose 0.5, 0/23; dose 1.0, 4/39. The
confidence interval (CI) for m is [.0052,.2064]. The one-sided
exact p-values of the unconditional and conditional tests are
.0474 and .0897, respectively. For a study of occurrence of
fibrosarcomas, the data were dose 0, 0/20; dose 0.5, 0/50;
dose 1.0, 2/50. The CI for 7 is [.0003,.0963]. The one-sided
exact p-values of the unconditional and conditional tests are
.0715 and .1716, respectively. In both cases, the p-value of the
unconditional test is about half that of the conditional one.

When the hypothesis of interest is whether the success rates
in all K groups are equal, i.e., Hy: m; # 7; (for at least one
pair ¢ and j), the usual statistic (Fleiss, 1981, p. 139) is

K
2
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where X/
N=mi+ mz

Mehta and Hilton (1993) used Ty to construct an
unconditional test for homogeneity based on the uncondi-
tional approach of Barnard (1947) and Suissa and Shuster
(1985). Using the exact confidence interval for r, the p-value
of the unconditional homogeneity test is

- X;, m = 21_ Xi, mg = Zl_l Xl, and

resm| ¥ I1(2)wamm=s) 4o
neC,y
(u1,....ug)ERy 1=1
(4)
where Ry = {(u1,u2,...,ug) € Qu : Ty(uy,ug,...,ug) >
TH(II,:EQ, e ny)}
Ezample 3
To illustrate the method, we reanalyze, using v = .001,

the data (Pettriciani, 1985) on infections missed by three
early AIDS test kits, i.e., 4/61 (Abbott), 1/92 (Litton), and
1/236 (ENI). The CI for 7 is [.0025,.0482]. The two-sided
exact p-values of the proposed unconditional and conditional
(Gastwirth and Johnson, 1989) tests of homogeneity are .0048
and .0073, respectively.

3. An Unconditional Cochran—Mantel-Haenszel Test
for Stratified 2 x 2 Tables

Often, the success rates of two treatments are compared
over K strata formed by relevant covariates. The number
of successes in the ith group of the jth stratum, Xij, is
a binomial random variable with parameters m;; and ng;
(1—12 j=1,...,K). We are testing Hy: T = Wi = W
for j = 1,...,K against Hy: m; # mo; for at least one
j. The most common test used for analysis of stratified
2 x 2 contingency tables is the Cochran—Mantel-Haenszel test
(Breslow and Day, 1980, p. 138; Agresti, 1990, p. 230),

K« 2
Temnu = ZXU mi;n1;/Ny) /
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Mmijmeinine;
Z NN (5)
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where N; = ny;+ny;, my; = 15 +25, and mo; = Nj—my;.
The exact conditional inference in this setting is based on
conditioning on the total number of successes in each stratum
(cf., Hirji et al., 1994).

The unconditional sample space is Qs = {x = (z11221,.. .,
T1gTok) 1 0 < xy; S mgjfori = 1,25 =1,...,K}. Let
w = (m,...,m;,..., 7)) denote the vector of stratum specific
m; under the Hy. Then

K

Jj=1

— )™

For each stratum j, the (1 —+/K)% confidence interval C’i‘ /K
for m; is calculated. The product Cs. of the K confidence
intervals ny /K is taken as a conservative joint 100(1 — ¥)%
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Table 1
Response to thymosin (Li, Simon, and Gart, 1979)
Group 1 Group 2 Group 3
Failure Success Failure Success Failure Success
Thymosin 1 10 0 9 0 8
Placebo 1 12 11 3 7

confidence interval for the vector 7. Suppose the outcome x
was observed and T'(x) = t. The p-value of the unconditional
Cochran-Mantel-Haenszel test (CMH) is defined as

py= sup Pr(Topmmu 21t)+7

weCs,

il
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where Ropyg = {u = (viiugi, ... ui1kuzx) € Sus
Temu(a) > t}, my; = uij + ugj4, and moj = Nj —my;.

Examples 4 and 5

We use the new method, with v = .001, to analyze two data
sets. Meyskens et al. (1981) reported that the number

of relapses in a stratified randomized study of Bacille bilié
de Calmette-Guérin (BCG) immunotherapy vs. BCG + high
dose of vitamin A in malignant melanomas were, for Stage I,
4 out of 16 for BCG and 1 out of 19 for BCG + high dose
of vitamin A and, for Stage II, 2 out of 4 for BCG and 3 out
of 10 for BCG + high dose of vitamin A. The one- and two-
sided p-values of the proposed exact unconditional test are
.0499 and .094, respectively, and the corresponding p-values
of the exact conditional test are .090 and .156, respectively.
The difference between the p-values is meaningful.

Table 1 presents the data from a study of the response to
thymosin in bronchogenic carcinoma patients (Li, Simon, and
Gart, 1979). The one-sided p-values of the exact unconditional
and conditional tests are .087 and .156, respectively.

4. Monte Carlo Power Study

The power properties of the exact unconditional and
conditional tests for trend in 2 x K contingency tables were
compared by a simulation study. The successes in each group
follow a binomial distribution with parameters (m;,n;), where
m; = exp(a + fv;)/[1 + exp(a + Bv;)]. Equally spaced scores
{1,2,..., K} were used and five balanced 2x 3 and 2x 4 tables
with n; = n were considered as follows:

Setting 1: 2 x 3 table, m; = .001, mo = .010, w3 = .110
(a = —9.5, 8 = 2.47) with n = 20, 30, 40, and
50,

Setting 2: 2 x 3 table, m; = .025, mp = .076, w3 = .206

(a = —4.8, 8 = 1.15) with n = 20, 30, 40, and

50,

2 x 3 table, m; = .373, my = .5, w3 = .627

(a = —1.04, 8 = .52) with n = 10, 20, 30, and

40,

Setting 3:

Setting 4: 2 x 4 table, m; = .001, mp = .003, w3 = .023,
T4 = .137 (@ = -9.5, § = 1.92) with n = 15,
20, 25, and 30,

Setting 5: 2 x 4 table, 71 = .061, mx = .118, m3 = .214,
w4 = .358 (@ = —3.45, 8 = .717) with n = 10,
15, 20, and 25.

Table 2 gives empiric power estimates for the .05-level
unconditional and conditional trend tests for the five settings.
Each estimate is based on 400 replications. The expected
number of responses (ENR) are given in parentheses. When
ENR is small (<5), which occurs when the m; or the sample
sizes n; are small, the power of the unconditional test is
greater than that of the conditional one. This improvement
in power decreases as the ENR increases. If the ENR exceeds
15, this gain in power is small.

5. Computational Considerations

The unconditional tests were implemented in SAS IML.
The algorithm consisted of identifying the set (R, Ry, or
Reapy) of all outcomes at least as extreme as the observed
one. Subroutine NLPDD was then used to find the maximum

Table 2
Empirical power estimates for the five settings.
ENR is expected number of responses.

Sample size (ENR)

Setting 1
Test 20 (2.4) 30 (3.6) 40 (4.8) 50 (6.1)
Unconditional 610 765 .875 .930
Conditional .325 580 735 .848
Setting 2
Test 20 (6.1) 30 (9.2) 40 (12.3) 50 (15.4)
Unconditional .560 750 .828 .910
Conditional .465 678 793 878
Setting 3
Test 10 (15) 20 (30) 30 (45) 40 (60)
Unconditional .260 .458 .623 745
Conditional 213 .458 623 745
Setting 4
Test 15 (2.5) 20 (3.3) 25(41) 30 (49)
Unconditional .638 733 .855 .895
Conditional .360 .488 670 758
Setting 5
Test 10 (7.5) 15(11.3) 20 (15) 25 (18.8)
Unconditional .538 728 .833 915
Conditional .488 .685 .800 .908
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over the nuisance parameter(s). The time required for
calculating the p-value depends on the size of the
unconditional sample space, e.g., the trend test in a 2 x 3
table with n = 20 (50) took 28 seconds (2 minutes), but
a 2 X 4 table with n = 50 took 1.5 hours. For two 2 x 2
tables with n1; == ni2 = na; = ngy = 20, CMH took 4
minutes, but if n;; = 50, the time required was 2 hours on a
Pentium 166 MHz. All the conditional tests were performed
using StatXact3.
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RESUME

En se basant sur un intervalle de confiance du paramétre
de nuisance, Berger et Boos (1994, Journal of the American
Statistical Association 89, 1012-1016) ont récemment proposé
de nouveaux tests non conditionnels. Ils ont notamment
montré que, concernant les tables 2 x 2, cette procédure
était en général plus puissante que le test exact de Fisher.
Reprenant et prolongeant cette approche, cet article vise &
obtenir des tests non conditionnels dans le cas de tables 2 x 2
stratifiées et de tables 2x K (tendance ou homogénéité au sein
de K groupes). En réanalysant des données médicales déja
publiées, nous comparons ces procédures non conditionnelles
aux tests conditionnels correspondants.
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